Search results for "Rate of return on a portfolio"
showing 6 items of 6 documents
Fuzzy Mathematical Programming for Portfolio Management
2000
The classical portfolio selection problem was formulated by Markowitz in the 1950s as a quadratic programming problem in which the risk variance is minimized. Since then, many other models have been considered and their associated mathematical programming formulations can be viewed as dynamic, stochastic or static decision problems. In our opinion, the model formulation depends essentially on two factors: the data nature and the treatment given to the risk and return goals. In this communication, we consider several approaches to deal with the data uncertainty for different classical formulations of the portfolio problem. We make use of duality theory and fuzzy programming techniques to ana…
How to best return the value of a function
1989
Value preserving portfolio strategies in continuous-time models
1997
We present a new approach for continuous-time portfolio strategies that relies on the principle of value preservation. This principle was developed by Hellwig (1987) for general economic decision and pricing models. The key idea is that an investor should try to consume only so much of his portfolio return that the future ability of the portfolio should be kept constant over time. This ensures that the portfolio will be a long lasting source of income. We define a continuous-time market setting to apply the idea of Hellwig to securities markets with continuous trading and examine existence (and uniqueness) of value-preserving strategies in some widely used market models. Further, we discuss…
Cluster analysis for portfolio optimization
2005
We consider the problem of the statistical uncertainty of the correlation matrix in the optimization of a financial portfolio. We show that the use of clustering algorithms can improve the reliability of the portfolio in terms of the ratio between predicted and realized risk. Bootstrap analysis indicates that this improvement is obtained in a wide range of the parameters N (number of assets) and T (investment horizon). The predicted and realized risk level and the relative portfolio composition of the selected portfolio for a given value of the portfolio return are also investigated for each considered filtering method.
Aggregation of preferences for skewed asset returns
2014
This paper characterizes the equilibrium demand and risk premiums in the presence of skewness risk. We extend the classical mean-variance two-fund separation theorem to a three-fund separation theorem. The additional fund is the skewness portfolio, i.e. a portfolio that gives the optimal hedge of the squared market return; it contributes to the skewness risk premium through co-variation with the squared market return and supports a stochastic discount factor that is quadratic in the market return. When the skewness portfolio does not replicate the squared market return, a tracking error appears; this tracking error contributes to risk premiums through kurtosis and pentosis risk if and only …
Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming
2008
AbstractThis paper provides new models for portfolio selection in which the returns on securities are considered fuzzy numbers rather than random variables. The investor's problem is to find the portfolio that minimizes the risk of achieving a return that is not less than the return of a riskless asset. The corresponding optimal portfolio is derived using semi-infinite programming in a soft framework. The return on each asset and their membership functions are described using historical data. The investment risk is approximated by mean intervals which evaluate the downside risk for a given fuzzy portfolio. This approach is illustrated with a numerical example.